黄博士网: 教育网, AI数学手册计算器软件,电化学虚拟实验室,虚拟电化学工作站,电化学软件
首页
| 目录
| 世界
| 学科
| 文科
| 科学
| 数学
| 物理
| 化学
| 医学
| 计算
| 软件
| 帮助
| 打赏
+
+
+
=
数论
二级学科, 专业名称:数论, 门类/类别:理学, 学科/类别:数学
数论是纯粹数学的分支之一,主要研究整数的性质。整数可以是方程式的解(丢番图方程)。有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数
(丢番图逼近)。
▪ 1710:初等数论 ▪ 1720:解析数论 ▪ 1730:代数数论
▪ 1740:超越数论 ▪ 1750:丢番图逼近 ▪ 1760:数的几何
▪ 1770:概率数论 ▪ 1780:计算数论 ▪ 1799:数论其他学科
按研究方法分类:
数论大致可分为初等数论和高等数论。
初等数论是用初等方法研究的数论,它的研究方法本质上说,就是利用整数环的整除性质,主要包括整除理论、同余理论、连分数理论。
高等数论则包括了更为深刻的数学研究工具。它大致包括代数数论、解析数论、计算数论等等。
按研究领域分类:
初等数论
高斯于其著作《算术研究》探讨了二次互反律高斯于其著作《算术研究》探讨了二次互反律
初等数论主要就是研究整数环的整除理论及同余理论。此外它也包括了连分数理论和少许不定方程的问题。本质上说,初等数论的研究手段局限在整除性质上。
初等数论中经典的结论包括算术基本定理、欧几里得的质数无限证明、中国剩余定理、欧拉定理(其特例是费马小定理)、高斯的二次互反律, 勾股方程的商高定理、佩尔方程的连分数求解法等等。
解析数论
借助微积分及复分析(即复变函数)来研究关于整数的问题,主要又可以分为乘性数论与加性数论两类。乘性数论藉由研究积性生成函数的性质来探讨素数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。
加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。
解析数论的创立当归功于黎曼。他发现了黎曼zeta函数之解析性质与数论中的素数分布问题存在深刻联系。确切的说, 黎曼ζ函数的非平凡零点的分布情况决定了素数的很多性质。黎曼猜测, 那些零点都落在复平面上实部为1/2的直线上。这就是著名的黎曼假设
—千禧年大奖难题之一。值得注意的是, 欧拉实际上在处理素数无限问题时也用到了解析方法。
解析数论方法除了圆法、筛法等等之外, 也包括和椭圆曲线相关的模形式理论等等。此后又发展到自守形式理论,从而和表示论联系起来。
代数数论
代数数论,将整数环的数论性质研究扩展到了更一般的整环上,特别是代数数域。一个主要课题就是关于代数整数的研究,目标是为了更一般地解决不定方程求解的问题。其中一个主要的历史动力来自于寻找费马大定理的证明。
代数数论更倾向于从代数结构角度去研究各类整环的性质, 比如在给定整环上是否存在算术基本定理等等。
这个领域与代数几何之间的关联尤其紧密, 它实际上也构成了交换代数理论的一部分。它也包括了其他深刻内容,比如表示论、p-adic理论等等。
几何数论
主要在于通过几何观点研究整数(在此即格点, 也称整点)的分布情形。最著名的定理为Minkowski定理。这门理论也是有闵科夫斯基所创。对于研究二次型理论有着重要作用。
计算数论
借助电脑的算法帮助研究数论的问题,例如素数测试和因数分解等和密码学息息相关的课题。
超越数论
研究数的超越性,其中对于欧拉常数与特定的riemann ζ函数值之研究尤其令人感到兴趣。此外它也探讨了数的丢番图逼近理论。
组合数论
利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由保罗·艾狄胥开创的思路。比如兰伯特猜想的简化证明。
算术代数几何
这是数论发展到目前为止最深刻最前沿的领域, 可谓集大成者。它从代数几何的观点出发,通过深刻的数学工具去研究数论的性质。比如怀尔斯证明费马猜想就是这方面的经典实例。整个证明几乎用到了当时所有最深刻的理论工具。
当代数论的一个重要的研究指导纲领,就是著名的郎兰兹纲领。
数学手册 - 初等数论
初等数学 - 初等数论
问题 ?
请发到 论坛
参阅
- 数学 - 数学符号 - 数学索引
- 手册 = 初中数学手册 + 高中数学手册 + 数学手册 + 实用数学手册
- 初等数学 = 小学数学 + 中学数学
( 初中数学 + 高中数学 )
- 高等数学 = 基础数学 ( 代数 + 几何 + 分析 ) + 应用数学
- 公式 - 定理 - 图
- 函数图 - 曲线图 - 平面图 - 立体图 - 动画 - 画画
- 书单 = 数学 + 物理 + 化学 +
计算 + 医学 + 英语 + 教材 - QQ群下载书
- 数学手册计算器 = 数学 +
手册 + 计算器 + 计算机代数系统
- 检测 - 例题 :